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- Collision data measured by dedicated subsystems
- Quantifies interactions with highly granular detectors

- Readouts must be reconstructed into particle components (tracks,
clusters) then full particle candidates and event information

- Challenge: data is often sparse and not fixed size
- Traditionally stored in tree structures
- For ML applications often ‘forced’ into matrix representations
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Graphs

- A graph is a mathematical structure composed of:

- Nodes: vertices with associated information (spatial coordinates,
features, etc)

- Edges: connections between nodes
- Can be directed or undirected
- Can have associated information

- Graphs can represent many types of relational/geometric data
- Graphs can be multilevel (nodes are encoded graphs)

This is a node

This is an edge -




Graph Neural Networks

- GNNs learn a smart embedding of the graph structure

- Leverage geometric information by passing and aggregating
messages from neighbors

- Practically, W, and B, are shallow neural networks

9
nd Initial “layer 0” embeddings are
0 equal to node features
hv = X, — 9
L hk—l h
hy =@ We| D o[+ Behy ! |, VE>C
v 2 ING)
—os6} ° e® g ® oo - U v
-08f @g ® . i
-tor ’.° A . ° non-linearity (e \ .
e, & ReLU ty h'g" average of neighbor’s
et _ eLUortanh)  ,evious layer embeddings

. ! . 1 ! 1 1 !
-10 05 0.0 0.5 1.0 15 20 25



GNNs for Jet Tagging

- ParticleNet graph convolution architecture
- Each node is a reconstructed particle or secondary vertex
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https://indico.cern.ch/event/952419/contributions/4041550/attachments/2113149/3554729/jet_tagging_gnn_CMSML_20200930_H_Qu.pdf
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GNNs for Particle Reconstruction

- GravNet architecture to form ParticleFlow candidates
- Each node is a PF element (track, calo clusters, etc)
- Edges formed by dynamic kNN or radius graph

- Encode with DNN then process with GCN or Highway Networks

track:

ECAL cluster
particle ' momentum pT=12GeV o GeV, ...
classification / \ regression v
v
elementwise elementwise
* - + / "
[Nelements, Nclass] [Nelements, 3] ECAL cluster
E=22GeV, ...
. . . . 72h of training on 2x Titan X
=V S EEGITEE find N neighbors in radius r g ¢ P
m aggregate graph info: [
SGConv or GATConv Iraltn
es

elementwise Separate decoding DNNs
DNN (2-3 layers, 512 units)

combined loss

* still slowly converging...
2 P 06 P 12 AM 08 AM 2 Pt

recent talk

wall time


https://indico.cern.ch/event/952419/contributions/4041555/attachments/2113070/3554608/2020_09_30.pdf
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GNN GANSs

- Graph based Generative Adversarial Network
- Generator uses message passing on noise graph to recreate input features
- Discriminator uses message passing to classify graph
- Using jet dataset, can recreate
particle eta, phi, pr with high fidelity
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https://indico.cern.ch/event/973140/contributions/4103763/attachments/2147965/3620920/Sparse%20Data%20Generation%20IML%20Meeting%2023_11.pdf

GNNs for Tracking

Basic procedure

1. Form initial graph from spacepoints/hits
(pre-processing)

2. Process with GNN to get probabilities of all
edges

3. Apply post-processing algorithm to link
edges together into tracks and get
parameters
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- Many places to improve/innovate

- Graph construction, architectures, data
augmentation...

- Most work shown here uses
TrackML dataset
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https://www.kaggle.com/c/trackml-particle-identification
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- Each message passing functlon IS a
FCN
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recursively connected

- Allows aggregation of progresswely
more distant information

- Weights can be shared across modules
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https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1805.06184
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Proof of Principle
NeurlPS 2019 ExaTrkX architecture:

- Node and edge features embedded in
latent space

- 8 graph modules with shared weights

- Initial embeddings concatenated at
each module

- Each FCN has 128 hidden features and
RelLU activation
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https://exatrkx.github.io/
https://arxiv.org/pdf/2003.11603.pdf
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Interaction Networks

Applies relational and object models
in stages to infer abstract interactions
and object dynamics

- Relation and object models are FCNs

- Total of 89,400 parameters (smaller than
previous architecture)

Relational reasoning
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Results:

- 95% edge efficiency

- Tracking efficiency
still being measured
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https://arxiv.org/abs/1612.00222
https://drive.google.com/file/d/1_BpJTFCit962qHAy0Q3RIrtq_T1XGIX-/view
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Embedding

Improve graph efficiency by embedding features

- Embed features in N-dimensional space where hits from same tracks
are close to each other

- Score “target” hit within embedding neighborhood against
“seed” hit at center

- Filter by score to create seed-to-target doublets, doublets form the graph

- Can repeat with embedding triplets as edges, creating 'n-plet’ graphs
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https://indico.cern.ch/event/831165/contributions/3717124/attachments/2024241/3385587/GNNs_for_Track_Finding.pdf
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Graph Construction

Optimizing graph construction can help GNNs learn effectively

- Edge efficiency: true edges/all edges
- Truth efficiency: true edges in graph/all possible true edges

‘Current’ Methods Exploratory Methods
- Layer pairs: create edges - Dynamic kNN
between nodes in adjacent . Learned clustering

layers within a A¢/Ar range

- Layer pairs+: allow edges
within a layer

- KNN: form edges between a hit
and its k closest neighbors (can

customize distance metric)
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Data Augmentation

- Including endcaps:
- Difficult in layer pairs construction due to edge ... - .

Pixel IN with Endcaps
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improve edge efficiency E o] 2 NN

- Dropping layers from graph construction o/ . ; \
- Reduce size of graph while maintaining track = °e=| - °
finding efficiency NN
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- Break symmetry of detector to possibly
enhance learning
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Instance Segmentation GNNs

- Instance segmentation: computer vision task of identifying
instances of an object in an image and forming pixel mask

- After message passing, node state vectors are used as input
to three branches:
- Classification branch identifies the node as signal or background

- Localization branch predicts a bounding box for each node
- Ellipses merged and scored to create track clusters

- Tracking branch predicts track parameters Input Graph
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https://arxiv.org/abs/2003.01251
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Elliptical Bounding Boxes

- Construct graphs using DBScan in eta-phi space
- Bounding ellipses parameterized with 5 degrees-of-freedom

- Encoded ellipses with each node for training
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Truth Encoding (per hit):

Po = (uo — up;)/0.04

p1 = (Vo — Vhit)/0.04

p, — log(a) /0.25

ps — log(b) /0.75

P4 = (6 — arctan2(vpi, up;e))/™
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Conformal GNNs

- Conformal transformation map tracks to straight lines
- Can extract track parameters directly from linear fit

- Run instance segmentation GNN in conformal space to find
tracks and calculate parameters in a single shot
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On-going Tracking Studies

- Optimize parameters of existing graph construction
algorithms and explore new ones

- Refine track formation algorithm for edge classification
architectures

- Improve existing architectures
- Include external effects in IN, optimize embedding...
- New ideas
- Timing information, Hough transforms, graph kernels...
- Test performance in LHC experiment environments

- Exploring hardware acceleration with FPGAs
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Conclusions

- Graphs are a natural representation of particle detector data

- Graph-based learning methods can leverage geometric
information for effective reconstruction
- Graph classification for jet tagging
- High-level node features for particle object reconstruction
- Graphs as nodes for simulation
- Optimal transport on graphs for event-level analysis (1919)
- Edge classification and instance segmentation tracking
- Geometric deep learning is synergistic with particle physics
- Rich and exciting area of research!
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Thank yout!

Happy to answer any questions!

DK sthais@princeton.edu £/ @basicsciencesav



